Companion Diagnostics and Biomarkers for Other Therapeutic Areas

As our knowledge of the human genome and the technologies that explore it continue to advance, healthcare and treatment models are increasingly transitioning from a "one-size-fits-all" model to a precision medicine model, which is defined as getting the right medicine to the right patient at the right time. Precision medicine is bringing more targeted therapies to market, with more than 25 new drugs based on patients’ genetic profiles being approved by the Center for Drug Evaluation and Research between 2014 and 2017 (1).

In addition, innovative companies such as IBM (the developer of IBM Watson), N-of-One (a molecular decision support system provider) and 2bPrecise LLC (an Allscripts company) have kept up with the growing market by developing companion diagnostic devices, which supplement targeted therapies by aggregating genomic data with clinical and lifestyle data (2). This data can help determine whether the benefits of a particular therapeutic product will outweigh its potentially dangerous side effects, in addition to determining the selection and dosage of a single drug tailored to a specific patient — finally making precision a true reality (3).

In 2013, there were 226 companion diagnostic collaborations, or deals — that amounts to almost one for every working day of the year (and up from merely 8 deals in 2009) (4). This market will continue to grow as the capabilities of companion diagnostic devices advance to assess the relevance of many drugs at once.

While precision medicine and companion diagnostics may be prominent in the oncology space, information on the correlation between the human genome and disease progression is pushing the precision medicine frontier beyond oncology. In fact, according to an analysis by Diaceutics Group, 93 percent of current drugs in Phase III clinical trials are diagnostic-dependent, with about two-thirds focused on non-oncology areas including cardiovascular disease, the central nervous system, and infectious diseases.

Cardiovascular Diseases

Companion diagnostic devices for cardiovascular disease are advancing to include built-in software and programmed algorithms that minimise patient effort and involvement in their treatments. For example, wearable sensors, such as the ZIO Patch by iRythm Technologies and the AliveCor Mobile ECG, produce data that can continuously monitor cardiac status of patients to detect any real-time changes. This level of customised care reduces hospital visits, in addition to adding R&D value by detecting early device efficacy.

Another example of companion diagnostic devices that provide personalised care to the patient is Medtronic’s pacemaker, which received FDA approval in 2017. The device combines predictive analytics and AI algorithms to automatically adjust the pacing rate of the devices to meet patient needs. In 2016, they gained approval to use similar technology for a defibrillator.

Finally, FDA approvals for glucose monitoring systems, such as the one developed by Dexcom, allow for  transmission of real-time glucose readings to a cell phone app every five minutes. This device can be used to alert patients of their blood sugar levels, or can be integrated with an automated insulin dosing system, which is triggered to release insulin when blood sugars are elevated.

Neurological Disorders

More than 30 percent of patients diagnosed with Alzheimer’s disease are misdiagnosed, which can have substantial impacts on patient treatments. However, because central nervous system (CNS) diseases, such as Alzheimer’s, have a strong genetic correlation to disease progression, there is an opportunity to develop better diagnostic tools with higher sensitivity and specificity, such as biomarker identification for targeted therapies and imaging technologies (2).

New imaging technologies such as brain amyloid and tau imaging, in combination with improved sensitivity for biomarkers in the blood or cerebrospinal fluid, present an opportunity for better diagnostics when it comes to CNS disorders including Schizophrenia, Parkinson’s, and Alzheimer’s.

Infectious Diseases

The discovery and development of antibacterial agents to treat infectious diseases has decreased mortality and allowed advances in modern medical devices to enable procedures such as transplants, heart surgeries and chemotherapy. However, there is a mounting antibacterial resistance crisis, which is calling for a coordinated effort to employ appropriate use of antibacterial agents when treating infectious diseases.

Fortunately, precision medicine has facilitated the emergence of companion diagnostics, such as monoclonal antibodies and single-pathogen agents, which can drive the development of antimicrobials that specifically target resistant pathogens (5). This has the potential to change the way antibacterial agents are developed and prescribed, which could result in reduced use of these agents and extended drug life (5). Additionally, diagnostic tests and data-based insights can be used to obtain a precise evaluation of a patient’s condition, enabling a more predictable and cost-effective treatment plan for infectious diseases (5).

Future Opportunities

As precision medicine continues to target drugs towards specific genetic mutations, there is an increasing role for device manufacturers and innovative companies to develop companion diagnostics. These companies are emerging into the precision medicine market in a variety of therapeutic areas, increasing clinical success of these therapies and reducing global healthcare costs. ICON is an experienced partner that can help you explore the opportunity for medical devices and diagnostics in the rapidly growing precision medicine landscape. Read our white paper to learn more.

Sources

  1. Woodcock, Janet. “Two Recent Scientific Advances Underscore an Encouraging Future for Precision Medicine at FDA.” FDA Voice. 11 July 2017. https://blogs.fda.gov/fdavoice/index.php/tag/precision-medicine/
  2. Das, Reenita. “Drug Industry Bets Big On Precision Medicine: Five Trends Shaping Care Delivery.” Forbes, Forbes Magazine, 8 Mar. 2017, www.forbes.com/sites/reenitadas/2017/03/08/drug-development-industry-bets-big-on-precision-medicine-5-top-trends-shaping-future-care-delivery/2/#506b76f17b33.
  3. Czapiga, Meggan. “Beyond Oncology: Implementing Precision Medicine and Companion Diagnostics Principles in Other Therapeutic Areas .” GSK R&D.
  4. Deloitte Center for Health Solutions. “Healthcare and Life Sciences Predictions 2020: A Bold Future?”https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/life-sciences-health-care/healthcare-and-life-sciences-predictions-2020.pdf
  5. Miller, Linda F. “Precision Medicine in Infectious Diseases: Changing the Treatment Paradigm for Bacterial Infections to End the Antimicrobial Resistance Crisis.” Journal of Precision Medicine.